
DistriNet

Lieven Desmet – iMinds-DistriNet, KU Leuven
Lieven.Desmet@cs.kuleuven.be

SecAppDev Leuven 2013 (07/03/2013, Leuven)

Client-side security policies
for the web

DistriNet

About myself

Lieven Desmet

Research manager of the iMinds-DistriNet
Research Group (KU Leuven, Belgium)

Active participation in OWASP:
Board member of the OWASP Belgium Chapter

Co-organizer of the academic track on past
OWASP AppSec Europe Conferences

@lieven_desmet

2

DistriNet

iMinds-DistriNet, KU Leuven

Headcount:
10 professors

65 researchers

Research Domains
Secure Software

Distributed Software

Academic and industrial collaboration in
30+ national and European projects

http://distrinet.cs.kuleuven.be
3

http://distrinet.cs.kuleuven.be/

DistriNet

Web Application Security Team

Web Session management
Session hijacking, fixation, SSL stripping, CSRF,...
CSRF protection: CsFire
• 50K downloads
• Available for Firefox and Chrome

Web Mashup Security
Secure integration of 3rd party JavaScript
Information Flow Control for JavaScript

Various Web Security Assessments
HTML5 security analysis for ENISA
Large scale assessments of security state-of-practise

4

DistriNet

Client-side security policies for the web

5

DistriNet

Sans Top 25 - OWASP Top 10

6

Focus on vulnerabilities and logical flaws in

the code, and server-side mitigations

This talk focuses on infrastructural support

as a complementary line of defense

DistriNet

Client-side security policies in the web

Web Browser Web Server

HTTP Request

HTTP Response

7

Security

Policy Policy enforcement

in the browser

DistriNet

Overview

Introduction

Securing browser-server communication

Mitigating script injection attacks

Framing content securely

Enabling cross-domain interactions

Wrap-up

8

DistriNet

Introduction

9

DistriNet

Overview

Basic security policy for the web:

Same-Origin Policy

What does it mean for scripts running on
your page?

What does it mean for frames included in
your page?

10

DistriNet

Two basic composition techniques

<html><body>

…

<script src=“http://3rdparty.com/script.js”>

</script>

…

</body></html>

<html><body>

…

<iframe src=“http://3rdparty.com/frame.html”>

</iframe>

…

</body></html>

3rd party

3rd party

Script inclusion

Iframe integration

11

DistriNet

Securing browser-server communication

12

DistriNet

Overview

Attacks:
Session hijacking

SSL Stripping

Countermeasures:
Use of SSL/TLS

Secure flag for session cookies

HSTS header

Public Key Pinning

13

DistriNet

Network attacks: Session hijacking

Web Browser Web Server

HTTP Request

HTTP Request

HTTP Response

HTTP Response

Cookie: PREF=ID=766awg-VZ

Cookie: PREF=ID=766awg-VZ

!

14

DistriNet

HTTPS to the rescue…

Web Browser Web Server

HTTP Request

HTTP Response

15

DistriNet

Problem cured?

TLS usage statistics:

0.78% of active domains use TLS (with valid
SSL certificate)

For Alexa top 1 million: 27.86% use TLS

Remaining problems:

Mixed use of HTTPS/HTTP and session cookies

SSL Stripping attacks

Internet SSL Survey 2010, Qualys

16

DistriNet

Mixed use of HTTPS/HTTP

Cookies are bound to domains, not
origins

By default, cookies are sent both over
HTTPS and HTTP

Any request to your domain over HTTP
leaks the (session) cookies…

!

17

DistriNet

Secure flag for cookies

Issued at cookie creation (HTTP response)

Set-Cookie: PREF=766awg-VZ;
Domain=yourdomain.com; Secure

If set, the cookie is only sent over an
encrypted channel

Should be enabled by default for your
session cookies!

18

DistriNet

Secure flag: state-of-practice

Browser compatibility

All recent browsers support the secure flag
for cookies

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa) 19

DistriNet

Some background on this experiment

Number of inspected
domains: 96

Total number of
inspected pages:
44431

Average number of
pages per domains:
462

36 out 96 domains
serve HTTPS pages

20

DistriNet

HTTP to HTTPS bootstrapping

Web Browser Web Server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Redirect to HTTPS

21

DistriNet

HTTP to HTTPS bootstrapping

HTTP 301/302 response
Location header redirects browser to the
resource over HTTPS
Location: https://mysite.com/

Meta refresh
Meta-tag in HEAD of HTML page
<meta http-equiv="refresh"
content="0;URL='https://mysite.com/'">

Via JavaScript
document.location = “https://mysite.com”

22

DistriNet

Network attacks: SSL Stripping

Web Browser Web Server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Moxie Marlinspike, BlackHat DC 2009

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Redirect to HTTPS

!

23

DistriNet

Strict Transport Security (HSTS)

Issued by the HTTP response header
Strict-Transport-Security: max-age=60000

If set, the browser is instructed to visit this
domain only via HTTPS

No HTTP traffic to this domain will leave the
browser

Optionally, also protect all subdomains
Strict-Transport-Security: max-age=60000;
includeSubDomains

24

DistriNet

HSTS: state-of-practice

Browser compatibility

Chrome 4+, Firefox 4+, Opera 12+

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa) 25

DistriNet

But can I trust the CAs ?

Comodo (March 2011)

9 fraudelent SSL certificates

Diginotar (July 2011)

Wildcard certificates for Google, Yahoo!,
Mozilla, WordPress, …

Breaches at StartSSL (June 2011) and
GlobalSign (Sept 2012) reported unsuccessful

…

!

26

DistriNet

Public Key Pinning

Issued as HTTP response header
Public-Key-Pins: max-age=500;
pin-sha1="4n972HfV354KP560yw4uqe/baXc=";
pin-sha1="IvGeLsbqzPxdI0b0wuj2xVTdXgc="

Freezes the certificate by pushing a fingerprint
of (parts of) the certificate chain to the browser

Currently an IETF Internet-Draft

Supported in Chrome 18+

27

DistriNet

Recap: Securing browser-server
communication

Use of TLS

Secure flag for cookies
to protect cookies against leaking over

HTTP

HSTS header
to force TLS for all future connections

Public Key Pinning
to protect against fraudulent certificates

28

DistriNet

Mitigating script injection attacks

29

DistriNet

Overview

Attack:

Cross-Site Scripting (XSS)

Countermeasures:

HttpOnly flag for session cookies

X-XSS-Protection header

Content Security Policy (CSP)

30

DistriNet

Example: Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

P

Attacker

P

!

31

DistriNet

HttpOnly flag for cookies

Issued at cookie creation (HTTP response)
Set-Cookie: PREF=766awg-VZ;
Domain=yourdomain.com; Secure; HttpOnly

If set, the cookie is not accessible via DOM
JavaScript can not read or write this cookie

Mitigates XSS impact on session cookies
Protects against hijacking and fixation

Should be enabled by default for your session
cookies!

32

DistriNet

HttpOnly: state-of-practice

Browser compatibility

Support in all browsers

Only recently on Android

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa) 33

DistriNet

X-XSS-Protection

Best-effort protection in the browser
against reflected XSS

Can be controlled via the X-XSS-Protection
header in the HTTP response

On by default

Completeness of protection
Protects only against reflected XSS

Multiple bypasses have been reported

34

DistriNet

X-XSS-Protection: modes of operation

Default protection

X-XSS-Protection: 1

Optional opt-out

X-XSS-Protection: 0

Blocking mode

X-XSS-Protection: 1; mode=block

Prevents the page from rendering

35

DistriNet

X-XSS-Protection: state-of-practice

Browser compatibility:

Internet Explorer 8+, Chrome and Safari

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa) 36

DistriNet

Content Security Policy (CSP)

Issued as HTTP response header
Content-Security-Policy: script-src 'self';

object-src 'none'

Specifies which resources are allowed to
be loaded as part of your page

Extremely promising as an additional
layer of defense against script injection

37

DistriNet

CSP set of directives

There are a whole set of directives
Here we discuss CSP v1.0

default-src
Takes a sourcelist as value

Default for all resources, unless overridden
by specific directives

Only allowed resources are loaded

38

DistriNet

CSP source lists

Space delimited list of sources
‘self’
‘none’
origin(s)

Examples
• https://mydomain.com
• https://mydomain.com:443
• http://134.58.40.10
• https://*.mydomain.com
• https:
• *://mydomain.com

39

DistriNet

CSP set of directives (2)

script-src
From which sources, scripts are allowed to be included

object-src
Flash and other plugins

style-src
stylesheets

img-src
images

media-src
sources of video and audio

40

DistriNet

CSP set of directives (3)

frame-src
list of origins allowed to be embedded as frames

font-src
web fonts

connect-src
To which origins can you connect (e.g. XHR,
websockets)

sandbox
Optional
Trigger sandboxing attribute of included iframes

41

DistriNet

CSP requires sites to “behave”

Inline scripts and CSS is not allowed
All scripts need to be externalized in dedicated
JS files

All style directives need to be externalized in
dedicated style files

Clean code separation

The use of eval is not allowed
To prevent unsafe string (e.g. user input) to be
executed

42

DistriNet

<script>

 function runMyScript() {

 alert('My alert');

 }

</script>

This link shows an alert!

Example: inline scripts

<script>

 function runMyScript() {

 alert('My alert');

 }

</script>

This link shows an alert!

page.html

43

DistriNet

Example: externalized scripts

<script src="myscript.js"></script>

This link shows an alert!

page.html

function runMyScript() {

 alert('My alert');

}

document.addEventListener('DOMContentReady',
function () {

 document.getElementById('myLink')

 .addEventListener('click', runMyScript);

});

myscript.js

44

DistriNet

Insecure relaxations, but be careful!

To temporary allow inline scripts
Content-Security-Policy: script-src 'self'
'unsafe-inline'

To temporary allow eval
Content-Security-Policy: script-src 'self'
'unsafe-inline' 'unsafe-eval'

To temporary allow inline style directives
Content-Security-Policy: style-src 'self' 'unsafe-
inline'

 45

Be careful!

DistriNet

CSP reporting feature

CSP reports violations back to the server
owner

server owner gets insides in actual attacks
• i.e. violations against the supplied policy

allows to further fine-tune the CSP policy
• e.g. if the policy is too restrictive

report-uri directive
report-uri /my-csp-reporting-handler

uri to which the violation report will be posted

46

DistriNet

Example violation report

Content-Security-Policy: script-src 'self' https://apis.google.com;
report-uri http://example.org/my_amazing_csp_report_parser

{

 "csp-report": {

 "document-uri": "http://example.org/page.html",

 "referrer": "http://evil.example.com/",

 "blocked-uri": "http://evil.example.com/evil.js",

 "violated-directive": "script-src 'self' https://apis.google.com",

 "original-policy": "script-src 'self' https://apis.google.com; report-
uri http://example.org/my_amazing_csp_report_parser"

 }

}

CSP violation report

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)
47

DistriNet

CSP Reporting: one step further

Apart from reporting violations via the
report-uri directive

CSP can also run in report only mode

Content-Security-Policy-Report-Only:
default-src: 'none'; script-src 'self'; report-
uri /my-csp-reporting-handler

Violation are reported

Policies are not enforced

48

DistriNet

Some CSP examples

Examples:

Mybank.net lockdown

SSL only

Social media integration

Facebook snapshot

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)
49

DistriNet

Example: mybank.net lockdown

Scripts, images, stylesheets
from a CDN at https://cdn.mybank.net

XHR requests
Interaction with the mybank APIs at https://api.mybank.com

Iframes
From the website itself

No flash, java, ….

Content-Security-Policy: default-src 'none';
script-src https://cdn.mybank.net;
style-src https://cdn.mybank.net;
img-src https://cdn.mybank.net;
connect-src https://api.mybank.com;
frame-src 'self'

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)
50

DistriNet

Example: SSL only

Can we ensure to only include HTTPS content
in our website?

Content-Security-Policy: default-src https:;
script-src https: 'unsafe-inline';
style-src https: 'unsafe-inline'

Obviously, this should only be the first step,
not the final one!

51
Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)

51

DistriNet

Example: social media integration

Google +1 button
Script from https://apis.google.com
Iframe from https://plusone.google.com

Facebook
Iframe from https://facebook.com

Twitter tweet button
Script from https://platform.twitter.com
Iframe from https://platform.twitter.com

Content-Security-Policy: script-src https://apis.google.com
https://platform.twitter.com;
frame-src https://plusone.google.com
https://facebook.com https://platform.twitter.com

52
Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)

52

DistriNet

X-WebKit-CSP: default-src *;
script-src https://*.facebook.com http://*.facebook.com
https://*.fbcdn.net http://*.fbcdn.net *.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com *.spotilocal.com:*
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'
'unsafe-eval' https://*.akamaihd.net http://*.akamaihd.net;style-
src * 'unsafe-inline';
connect-src https://*.facebook.com http://*.facebook.com
https://*.fbcdn.net http://*.fbcdn.net *.facebook.net
.spotilocal.com: https://*.akamaihd.net ws://*.facebook.com:*
http://*.akamaihd.net;

X-WebKit-CSP: default-src *;
script-src https://*.facebook.com http://*.facebook.com
https://*.fbcdn.net http://*.fbcdn.net *.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com *.spotilocal.com:*
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'
'unsafe-eval' https://*.akamaihd.net http://*.akamaihd.net;style-
src * 'unsafe-inline';
connect-src https://*.facebook.com http://*.facebook.com
https://*.fbcdn.net http://*.fbcdn.net *.facebook.net
.spotilocal.com: https://*.akamaihd.net ws://*.facebook.com:*
http://*.akamaihd.net;

Example: Facebook snapshot

53

DistriNet

Third-party JavaScript is everywhere

Advertisements
Adhese ad network

Social web
Facebook Connect
Google+
Twitter
Feedsburner

Tracking
Scorecardresearch

Web Analytics
Yahoo! Web Analytics
Google Analytics

…

54

DistriNet

“88.45% of the Alexa top 10,000 web
sites included at least one remote

JavaScript library”

55

CCS 2012

Full experiment and interesting attacks are discussed

in detail by the authors in the “Sandboxing JavaScript” sessions

DistriNet

Malicious third-party scripts can ...

56

DistriNet

CSP: state-of-practice

Browser compatibility:

Firefox and Chrome

Older header names: X-WebKit-CSP, X-
Content-Security-Policy

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa) 57

DistriNet

Recap: Mitigating script injection
attacks

HttpOnly flag for session cookies
To protect cookies against hijacking and fixation
from JavaScript

X-XSS-Protection header
Coarse-grained control over built-in browser
protection against reflected XSS

Content Security Policy (CSP)
Domain-level control over resources to be included
Most promising infrastructural technique against
XSS
Interesting reporting-only mode

58

DistriNet

Framing content securely

59

DistriNet

Overview

Attacks:

Click-jacking

Same domain XSS

Countermeasures:

X-Frame-Options header

HTML5 sandbox attribute for iframes

60

DistriNet

Click-jacking

Source: “Busting Frame Busting: a Study of Clickjacking

Vulnerabilities on Popular Sites” (W2SP 2010)

!

61

DistriNet

Unsafe countermeasures

A lot of unsafe ways exist to protect against
clickjacking

if (top.location != location)
top.location = self.location;
if (parent.location != self.location)
parent.location = self.location;

Can easily be defeated by
Script disabling/sandboxing techniques
Frame navigation policies
XSS filters in browsers

Source: “Busting Frame Busting: a Study of Clickjacking

Vulnerabilities on Popular Sites” (W2SP 2010)
62

DistriNet

X-Frame-Options

Issued by the HTTP response header
X-Frame-Options: SAMEORIGIN

Indicates if and by who the page might be
framed

3 options:
DENY

SAMEORIGIN

ALLOW-FROM uri

63

DistriNet

X-Frame-Options

Browser compatibility:

Firefox, Internet Explorer, Opera

Safari, Chrome

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa) 64

DistriNet

Limitations of framing content
in same origin

Iframe integration provides a good
isolation mechanism

Each origin runs in its own security context,
thanks to the Same-Origin Policy

Isolation only holds if outer and inner
frame belong to a different origin

Hard to isolate untrusted content within
the same origin

!

65

DistriNet

HTML5 sandbox attribute

Expressed as attribute of the iframe tag
<iframe src= "/untrusted-path/index.html"
sandbox></iframe>

<iframe src="/untrusted-path/index.html"
sandbox= "allow-scripts"></iframe>

Level of Protection
Coarse-grained sandboxing

‘SOP but within the same domain’

66

DistriNet

Default sandbox behavior

Plugins are disabled

Frame runs in a unique origin

Scripts can not execute

Form submission is not allowed

Top-level context can not be navigated

Popups are blocked

No access to raw mouse movements data

 67

DistriNet

Sandbox relaxation directives

Relaxations:
allow-forms
allow-popups
allow-pointer-lock
allow-same-origin
allow-scripts
allow-top-navigation

Careful!
Combining allow-scripts & allow-same-origin voids
the sandbox isolation

Plugins can not be re-enabled

68

DistriNet

CSP & HTML5 sandbox as security
enabler

69

Combination of CSP and HTML5 sandbox
Enabling technologies for drafting a web
application security architecture

Allows to define whether or not certain
functions/scripts are allowed to run in the
origin of the site

Presented by Mike West at Devoxx 2012
Used on Google docs, …

DistriNet

Example of sandboxing unsafe
javascript

70

Main site
Sandboxed JS

execution

environment
Secured with CSP

Delegates insecure executions
to the sandboxed iframe

Web Messaging

Sandboxed iframe

Runs in unique origin

Allowed to run JS

DistriNet

Main page (index.html)

71
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

Content-Security-Policy: script-src 'self'

<html><head>

 <script src="main.js"></script>

</head>

<body>

 Click here

 <iframe id="sandboxFrame" sandbox="allow-scripts"
src="sandbox.html">

 </iframe>

 <div ="#content"></div>

</body></html>

71

DistriNet

Main script (main.js)

72
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

document.querySelector('#click').addEventListener('click',

 function(){

 var iframe = document.querySelector('#sandboxFrame');

 var message = {

 command = 'render';

 context = {thing: 'world‘}};

 iframe.contentWindow.postMessage(message, '*');

});

window.addEventListener('message', function(event){

 //Would be dangerous without the CSP policy!

 var content = document.querySelector('#content');

 content.innerHTML = event.data.html;

});

72

DistriNet

Sandboxed frame (sandbox.html)

73
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

<html><head>

 <script>

 window.EventListener('message', function(event) {

 var command = event.data.command;

 var context = event.data.context;

 var result = callUnsafeFunction(command, context);

 event.source.postMessage({

 html: result}, event.origin);

 });

 </script>

</head></html>

73

DistriNet

And what’s next?

74

Seamless integrating unsafe input with the
sandbox attribute

<iframe sandbox seamless srcdoc="<p>Some
paragraph</p>"> </iframe>

seamless attribute
Renders visually as part of your site
Only for same-origin content

srcdoc attribute
Content as a attribute value instead of a
remote page

DistriNet

HTML5 sandbox

75

Browser compatibility

Internet Explorer, Chrome, Safari, Firefox

Usage statistics

Own experiment on top 100 of websites, visited from Belgium (Alexa)

DistriNet

Recap: Framing content securely

X-Frame-Options header

Robust defense against click-jacking

Any state-changing page should be protected

HTML5 sandbox attribute for iframes

Coarse-grained sandboxing of resources and
JavaScript

Interesting enabler for security architectures

• More to come in the talk of Nick and Steven!

76

DistriNet

Enabling cross-domain interactions

77

DistriNet

And there is a lot more …

Problem:
Sometimes the Same-Origin Policy is too

restrictive

Enabling technologies:
Cross Origin Resource Sharing (CORS)

Crossdomain.xml

Web Messaging (aka postMessage)

…

78

DistriNet

HTML5: security analysis

79

DistriNet

Analysis of the specifications

80

A Security Analysis of Next
Generation Web Standards

Commissioned by European Network and
Information Security Agency (ENISA)

Performed by iMinds-DistriNet, KU Leuven

Full report available at ENISA
http://www.enisa.europa.eu/activities/Resilience-
and-CIIP/critical-applications/web-security/a-
security-analysis-of-next-generation-web-standards

DistriNet

Analysis results

81

Well-defined /
Secure

Isolation
Properties

Consistency
User

Involvement

HTML5 8 3 2 2

Web Messaging 1 2

XMLHttpRequest 1 + 2 1

CORS 2 1

UMP

Web Storage 3 1 1

Geolocation API 5 1 1 1

Media Capture API 3

System Information API 3 1 1 2

Widgets - Digital Signatures 2

Widgets - Access Req Policy 3 1

Total 25 8 10 8

DistriNet

Wrap-up

82

DistriNet

Conclusion

Whole new range of security features
Browser-side enforcement, under control of
the server

NOT a replacement of secure coding
guidelines, but an interesting additional line
of defense for

Legacy applications
Newly deployed applications

And most probably, there is many more to
come in the next few years…

83

DistriNet

Acknowledgements

 The work is partially funded by the European FP7 projects
WebSand, STREWS and NESSoS.

With the financial support from the Prevention of and Fight
against Crime Programme of the European Union.

84

http://www.b-ccentre.be/
https://www.websand.eu/
http://cordis.europa.eu/fp7/home_en.html
http://www.nessos-project.eu/
http://www.strews.eu/

DistriNet

References

85

Ph. De Ryck, M. Decat, L. Desmet, F. Piessens, W. Joosen. Security of web mashups: a
survey (NordSec 2010)
G.Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame busting: a study of
clickjacking vulnerabilities at popular sites (W2SP 2010)
Mike West. An introduction to Content Security Policy (HTML5 Rocks tutorials)
Mike West. Confound Malicious Middlemen with HTTPS and HTTP Strict Transport
Security (HTML5 Rocks tutorials)
Mike West. Play safely in sandboxed iframes (HTML5 Rocks tutorials)
Ivan Ristic. Internet SSL Survey 2010 (Black Hat USA 2010)
Moxie Marlinspike. New Tricks for Defeating SSL in Practice (BlackHat DC 2009)
Mike West. Securing the Client-Side: Building safe web applications with HTML5 (Devoxx
2012)
B. Sterne, A. Barth. Content Security Policy 1.0 (W3C Candidate Recommendation)
D. Ross, T. Gondrom. HTTP Header Frame Options (IETF Internet Draft)
J. Hodges, C. Jackson, A. Barth. HTTP Strict Transport Security (HSTS) (IETF RFC 6797)
C. Evans, C. Palmer, R. Sleevi. Public Key Pinning Extension for HTTP (IETF Internet Draft)

https://lirias.kuleuven.be/bitstream/123456789/317390/1/paper.pdf
https://lirias.kuleuven.be/bitstream/123456789/317390/1/paper.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/transport-layer-security/
http://www.html5rocks.com/en/tutorials/security/transport-layer-security/
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
http://blog.ivanristic.com/downloads/Qualys_SSL_Labs-State_of_SSL_2010-v1.6.pdf
http://www.youtube.com/watch?v=MFol6IMbZ7Y
http://parleys.com/d/3521
http://parleys.com/d/3521
http://parleys.com/d/3521
http://www.w3.org/TR/CSP/
http://tools.ietf.org/html/draft-ietf-websec-frame-options-00
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-04

